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MARTIN BOUNDARIES OF RANDOM WALKS 
ON FUCHSIAN GROUPS 

BY 

CAROI+INE SERIES 

A B S T R A U I -  

Let I" be a finitely generated non-elementary Fuchsian group, and let ~ be a 
probability measure with finite support on I" such that supp # generates I" as a 
semigroup. If I" contains no parabolic elements we show that for all but a small 
number of co-compact I', the Marlin boundary M of the random walk on i" with 
distribution/1 can be identitied with the limit set A of I'. If F has cusps, we prove 
that 1 can be deformed into a group I", abstractly isomorphic to 1", such that M 
can be identitied with A', the limit set of I"+ Our method uses the identification 
of A with a certain set of infinite reduced words in the generators of F described 
in [15]. The harmonic measure ~, (I] is the hitting distribution of random paths in 
I" on A) is a Gibbs measure on this space of infinite words, and the Poisson 

boundary of 1",/1+ can be identified with A, ~'. 

Introduction 

I.et I" be a finitely genera ted  Fuchsian group,  that  is, a discrete subgroup of  the 

g roup  G of conformal  au tomorph isms  of the unit disk D = {z C C : t z t < 1}- Let 

be a probabili ty distribution on F with finite support  such that suppp.  

generates  I" as a semigroup.  The random walk on 1" starting at 0 •  D with 

distribution p. is the sequence of random variables g~ = x, �9 �9 - x ,0 ,  where x+ is a 

I" valued random variable with distribution p.. 

The limit set A of F is the set of accumulat ion points of an orbit  I'zo, z0 E D. 

A is independent  of zo. If A consists of more  than two points, I" is said to be 

non-elementary and it is well known that !" is then non-amenable .  It is also well 

known that the random walk is transient, for example see [4]; that is, the 

probabili ty that a path ever returns to 0 is less than one. Moreover ,  by theorem 

1.3 of [9], with probabili ty one lim, .~ x , , . . - x . 0  = ~r E A. Define the measure  u 

on A as the hitting distribution v ( A )  = P r ( l i m , + ~ x , . . . x , 0 C  A )  for A C_ A. 
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A function h on I" is called t~-harmonic if h ( x ) =  Eg~rt~(g)h(xg) for all 

x E F. The Martin boundary M of F, p. is a compactification of F such that all 

harmonic functions have a representation 

h(x)  = ~M g(x,~)dA(~), xEF, 

where K(x, ~) is the so-called Martin kernel and 3. is a finite measure on M. 

The object of this paper is to determine M. 

If F contains no parabolic elements (an element is parabolic if it has exactly 

one fixed point on $1), then we show that M = A. Otherwise, we show that by 

moving apart the cusps slightly F may be deformed to a group F' abstractly 

isomorphic to F, with generators satisfying the same relations as in F. M clearly 

only depends on F considered as an abstract group, so that in this case we obtain 

M = A'. A' is a covering of A, in the sense that there is a F-equivariant surjective 

map A'---~ A which fails to be injective only at parabolic points in A, where it is 

two to one. 

This result is known when F is the free group on two generators F2 [5], [3]. F2 

can be embedded in G as follows: take four disjoint circular arcs in D2 

orthogonal to the unit circle S 1, and let a, b be elements of G which carry the 

exterior of one arc to the interior of the opposite arc [15]. It is well known that 

(a, b > = F2. The limit set of F2 is a Cantor set consisting of the intersection of all 

images of the regions inside the four circles. A can be identified with the space 5; 
of infinite reduced words in the generators a, b; that is words in which a 

generator is never followed by its inverse. In [5] and [3] the Martin boundary is 

identified with ~E. Contrary to the suggestion in [5], it is a non-trivial exercise to 

extend these results to the general case. 
The modification in case F has cusps, referred to above, is illustrated in this 

case when the four defining circles described above touch on S 1, so that F2 has 

cusps. The deformation consists in this case of replacing F2 by the group F~' 

obtained by slightly shrinking and separating the defining circles and making the 

same identifications as before. 

Our proof of the general result uses the method of [15], in which it is shown 

that, for all but a small number of co-compact F with few generators and short 

relations, it is possible to construct a space of infinite reduced words E and a 

map lr :~--~A which is surjective and which fails to be injective only at a 

countable number of points at which it is two to one. Using this construction it is 

possible by elaborating the methods of [5] and [3] to identify the Martin 

boundary with A. An important step in the proof is a result which has 
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independent interest, namely a Perron-Frobenius type theorem for random 

products of infinite positive matrices. This is proved in section 5. This theorem is 

not unlike the infinite dimensional version of the multiplicative ergodic theorem 

for compact operators in [13]. A finite dimensional version of the same result is 

given in [14]. 

The harmonic measure on A = M is given by 

v(E)= Pr [ lim x~... xnOE E] 

Intuitively v is the hitting distribution on A of random paths starting at 0. Any 

bounded harmonic function on F has a representation 

h(x) = f^ K(x, ~)f(~)dv(sC), 

where f is a bounded Borel function on A ([11] lemma 10.42). This representa- 

tion is unique up to sets of v measure zero. It follows from the results in [10] and 

[11] that A, v is what Furstenberg calls the Poisson boundary of F,/z. 

Now v may be regarded as a measure on E. It was shown in [15] that Y~ is of 

finite type [2]. We show in section 6 that v is a Gibbs measure with respect to the 

function 
~ b ( e l e 2 " - ) =  -logK(el, e~e2..'), e,e2"" EE. 

This allows one to deduce, for example, a central limit theorem for random 

sequences of the type described in [16], see [2]. 

In section 1 we recall the basic facts about Martin boundaries and state the 

main results of the paper. In section 2 we summarize necessary facts about 

Fuchsian groups and describe the relevant features of the space E of infinite 

reduced words referred to above. In sections 3 and 4 we establish the main 

technical result that the probability u (x, y) that a random path starting at x ever 

reaches y can be expressed as a coefficient in a certain random product of infinite 

matrices. 

Throughout,  e will denote the identity of F. Without loss of generality we may 

assume that 0 is not a fixed point of F, so that the map F---~ F0 is injective. We 

shall write x for x 0 when this does not lead to confusion. We always label arcs on 

S ~ in an anti-clockwise direction, so that [P, Q] means the closed interval of 

points between P and Q moving in an anti-clockwise direction. For P, Q ~ S 1 

we write I P -  Q I for the Euclidean distance between P and Q. If v, w are 

vertices of G(F)  we write d(v, w) for the number of edges in the shortest path in 

G(F)  from v to w and Iol for d(O,v). If g ~ F  we write Igl=d(O, gO). 
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The author would like to thank Y. Guivarc'h for encouragement with this 

work and R. Spatzier for pointing out the problem with the cusps. 

w The Martin boundary and harmonic functions 

Let F be a finitely generated non-elementary Fuchsian group without cusps, 

and let p. be a probability distribution on F with finite support. Let u(x, y), 

x ,y  E F, be the probability that starting at x, a random path x , . . . x ,  with 

distribution g ever reaches y. The Martin kernel of the random walk is defined 

by 

u(x, y) x,y e r .  K(x ,y )  = u(e ,y)  ' 

F can be embedded as a subset of R" by the map i : y ---> K ( - , y ) .  Then i(F) is 

compact and the space B = i(F) - i(F) is called the Martin boundary of F, it. For 

these and other results about Martin boundaries we refer the reader to [11] or 

for a less formal account to [6]. 

We shall show that i(F) can be identified with FU A, with the topology 

induced as a subset o f /5 .  The main steps are the following two results: 

THEOREM 1.1. L e t y ,  EF ,  n = l , 2 , . . . , a n d l e t  l i m , ~ |  Then for 

each x E F, K(x,  7/)= i i m , ~ K ( x ,  y,)  exists and is independent of {y,}. 

THEOREM 1.2. Let s~ E A and suppose e le2""  E 7r-'(s~). (For a precise defini- 

tion of E, ~r, see below.) Then 

(i) lim K(z,s~) = 0 f o r * l E A ,  ~ .  

The convergence is uniform on some neighbourhood U of 71, in the sense that for 

each e > O, there exists 8 > 0 such that K ( z, ~ ) < e whenever I z - ~l ' l < 8 for some 

rI 'E U. 

(ii) 

COROLLARY 1.3. 

lim K ( e , . . .  e . ,  ~) = + oo. 

The functions K(x , .  ), x E F, separate points of F U A. 

COROLLARY 1.4. The Martin boundary of F,/~ is A. 

PROOF. This follows from Theorem 1.2 except for the case x, y E F, x ~ y. 

This is easily dealt with by noting that the equalities K ( x , y ) =  K ( x , x )  and 

K(y,  x) = K(y, y) cannot hold simultaneously, for this forces u(x, y)u(y,  x) = 1, 

which contradicts transience of the randbm walk. 
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PROOF. Define T : F U A--* i(F) as follows: 

if x E F ,  T ( x ) = K ( . , x ) ;  
if/5 ~ A choose ele2" �9 �9 E ~r-'(/5). Since lim,_~ et �9 �9 �9 e,0 =/5 (see Section 2), by 

Theorem 1.1, K( .  ,/5) exists as a pointwise limit of functions in i(F). Define 

T(/5) = lim,_~ K ( . , e , . . .  e,). T is injective by Corollary 1.3. 

If h E i(F) then h is a pointwise limit of functions K ( .  ,y , ) .  If lim,_~ y, = r/ 

exists then h = T(r/)  by Theorem 1.1. Otherwise {y,}7 ~ has at least two 

accumulation points/5, "0 E F U A. But then K( . , / 5 )  ~ K ( . ,  7)  by Corollary 1.3, 

which is impossible. 

HARMONIC FUNCTIONS. A function h on F is /z-harmonic if h(x)  = 

Es~rh(xg)tz(g ). Let H denote the set of non-negative /z-harmonic functions 

with h ( e ) =  1. We recall some general facts: 

(i) K ( . , / 5 ) E H  for any /5~i([~). 

(ii) Any extremal of H is of the form K(. , /5) ,  /5 E i ( F ) -  F, where we have 

identified F with i(F) using Corollary 1.3. 

(iii) Each h E H has a representation 

h(x)  = [.. K(x,  71)din(T1), x ~ F, 

where B, is the set of extremals of H and m is some probability measure on B,. 

COROLLARY 1.5. The functions K(. , /5) ,  /5 E i ( F ) - F ,  are precisely the 

extremals of H. 

PROOF. Suppose 

K (x, ~ ) : otht(x ) + (1 - ot)h2(x), 

By (iii) we may write 

h ~, h 2 E H, x ~ F, /5@A, O_-<c~_-<l. 

f 
K(x, ~) = I.. K(x, ~)dm(71) 

J tJ  

for some probability measure m on B, ; and by (ii) and Corollary 1.4 this is the 

same as 

K(x,~)  = f ,  K(x, , )dm(r l ) .  

Suppose 7/o ~ A, */o ~ ~:. By Theorem 1.2 there is a neighbourhood Vo of ~/o so 

that K ( g . , - q ) ~ 0  uniformly on V,,, where e , e 2 - "  E 7r '(~:) and gn - - e , . . . e . .  

Thus 
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!ira Jv K(g., ~)dm(n ) = O. 
0 

This forces m to be a point mass at ~:. 

PARABOLIC ELEMENTS IN r .  We shall show in the next section that if F has 

parabolic elements, we may replace F by an isomorphic group F' in such a way 

that M = M'.  The above results then show that M = A'. 

w Fuehsian groups 

A Fuchsian group is a discrete subgroup of the group 

of conformal automorphisms of the unit disk D. Elements of F are called 

parabolic, hyperbolic or elliptic according as they have one or two fixed points 

on S 1, or one fixed point in D. As in the introduction we may assume that 0 is not 

an elliptic fixed point. Parabolic fixed points of F are called cusps. 

Any finitely generated group I" has a fundamental polygon R which is a region 

bounded by a finite number of circular arcs orthogonal to S~, such that no two 

interior points of R are conjugate under F and such that every point in D is 

conjugate to some point in/~. Each side s of R n D is identified with another  

side s', by an element g(s) E F. The set Fo = {g(s) : s C OR} forms a symmetrical 

set of generators for F ([8], w F has parabolic elements if and only if two of 

the circles bounding R touch at a point on $1. Such a point is a cusp of F. 

The graph G(F)  of F, with respect to the generators Fo, may be represented as 

a net in D. The vertices are the points gO, g E F, and the edges are the directed 

lines joining vertices g0, g'0 whenever g-'g' E Fo. Such an edge we label g - 'g ' .  

G(I ' )  is the dual graph to the graph formed by all the images of OR under F. 

Relations in F correspond to closed paths in G(F).  Regions bounded by edges 

of G(F),  together possibly with arcs of S i, with no edges intersecting the interior, 

we call polygons. The polygons which meet at 0 may have a finite or infinite 

number of sides. Thinking of G(F)  as the dual of the graph of images of OR, it is 

clear that the latter occurs only when OR n S ~  0 .  Let P be such an infinite 

sided polygon. One sees that P n S' = {~:} if and only if ~ is a cusp of F. In this 

case one can deform the fundamental region R by slightly moving apart the two 

sides of R which touch at ~. Doing this for all cusps of OR, we obtain a new 

fundamental region R' .  If the same identification of sides is made as before, we 

obtain an identical set of generators F; satisfying the same relations as Fo ([8], 
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[12]). This deformed group F' is the one referred to at the end of the previous 

section. 

We shall call a pair F, F0 obtained as above non-exceptional if one of the 

following conditions hold: 

(i) D / F  is not compact.  

(ii) At  least five edges meet  at each vertex of G(F)  and every polygon in G(F)  

has at least five sides. 

(iii) At  least three edges meet  at each vertex of G(F)  and at least three of the 

polygons meeting at a vertex have at least seven sides. 

There  is a small number  of non-elementary exceptional groups, see [15] figs. 4 

and 5. 

In the remarks that follow it is immaterial whether or not F has cusps. 

In general an element g ~ F may be represented as a product of generators in 

many different ways. Among  these some are shortest in the sense that they use 

the minimum possible number  of generators.  Clearly this shortest  length is I g I- 
In [15] it is shown that for a non-exceptional group F, one can lay down certain 

simple rules, depending on the relations in F, in such a way that if g E F then g 

has a unique shortest representat ion as a product of generators satisfying these 

rules. Such a representat ion is called admissible. For example,  if el" �9 �9 e2~ = 1 is a 

relation in F, one of the rules specifies that el �9 �9 �9 ek never occurs, being instead 

replaced by e ~ .  �9 �9 -1 ek.i .  The precise details of the rules need not concern us 

here. Let >2r = {e, �9 �9 �9 e, : e, E Fo, e~ �9 �9 �9 e, is admissible}. 

TmZORE~ 2.1 ([15] proposition 4.6 and theorem 4.10). Let E,= 

{e~e2. �9 �9 E FN: e~.. �9 e, E E ~  for each n}. 

Then l i m , ~ e ~ . . -  e,O exists for each w = eze2" "" E Y_,. The limit is uniform on 

A. The map 7r : ~---~ A, zr(e te2. . .  ) =  i im,~=e~- . ,  e ,0 is a continuous surjection 

which is injective except at a countable number of points where it is two to one. 

We need some more facts about  admissible sequences. For details we refer to 

[15]. 
Let  e l - ' - e ~  E X t . .  Suppose we follow a path starting at 0, along 

el0, e~e20 , . . . , e~ . . . ep0 ;  and then at every succeeding vertex turn as far as 

possible to the left, subject only to the constraint that at each step the path 

followed be admissible. The portion of this path from e l . . .  e e to S 1 is called the 

extreme left path from e~-- .e~ and its endpoint  in S '  is denoted h ( e , . . ,  ee). 

Likewise the extreme right path from el .  �9 �9 ep turns at every step after e~ �9 �9 �9 e~0 

as far as possible to the right subject to the constraint that it be admissible. This 

path has endpoint  p(e~. . .ep) .  For e l - . . e p  ~>2F, let l ( e ~ . . . e p ) =  
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[p(e l . . . ep) ,A(e , . . . ep)] .  Let Z ( e l . . . e p ) = { a l a 2 . . . @ Y . : a ,  =e, ,  i<=p}. Then 

I ( e l . . . e p ) D I ( e l . . . e p , 1 )  for each p, I I ( e , . . . e p ) l ~ O  as p ~ o o ,  

rr(Z(el ' . "  ep)) C_ I ( e l . ' .  e,) and if ~: = 1r(e,e2. �9 �9 ) then {~} = ("1~=, I ( e l . . .  ep). 
If e l " "  ep ~ fl" �9 "[p then Int I(e~ .. �9 ep) A Int I ( / i . .  �9 ]'p) = •. We shall call any 

interval I (e , . . . ep ) ,  e , . . . e p  EY.v, an interval of rank p. For fixed e l . . . e p ,  

consider all the intervals l(e~ �9 �9 �9 epa) of rank p + 1. Using the fact that at least 

three edges meet at each vertex of G(F)  (since F is non-elementary) and the 

rules described in [15] it is easy to see that there are always at least two such 

intervals. 

2.2. The Finiteness Property 

The admissibility rules satisfy a certain finiteness property which is crucial. 

Namely there are only a finite number of distinct intervals 

( e l " "  e~-l)-II(el ' ' '  ep_~a), a ~ Fo, p ->_ 2, e , . . .  e, ~ E~, [15], theorem 4.12. 

This property is used in [15] to prove that the space ~ can be coded to a 

subshift of finite type [2]. 

2.3. Hyperbolic Distance 

Distances in D can be measured either in the usual Euclidean sense or 

hyperbolically. Two points x, y E D lie on a unique circle 3' orthogonal to the 

boundary S ~. The hyperbolic distance of x and y is given by the formula 

h(x, y ) =  I log[x, y, P ,P ' ] I ,  where P, P '  are the points where 3" cuts S 1 and 

[ . , .  . . . .  ] denotes cross ratio. Hyperbolic distance is invariant under conformal 

automorphisms of D. Hyperbolic and Euclidean distance are related by the 

formula 
dEuc~ (0, x ) = tanh lzh (0, x). 

Suppose F, Fo are given as above. Provided F has no cusps, there are constants 

a, /3 > 0 so that 
ot lg l<h(O,  gO)<f l lg  [ ([7], w 

One deduces that there are % 6 > 0 so that 

dE,c~(x, y) < ye~" for x, y E F 

whenever x = g l " ' "  g, EEv ,  y = [ i . . . [ ,  E E v  and e, = ~  for i =< n ([15], w 

w Convergence of random paths 

Throughout  the next three sections F is a finitely generated non-exceptional 

Fuchsian group without cusps and Fo a set of generators obtained from a 
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fundamental region as described above. We suppose that p. is probability 

distribution of finite support  on F. 

By I91 theorem 1.3 the random walk on I" with distribution /~ is such that 

lim, . ~ x , . - . x , 0  exists with probability one. In particular the random walk is 

transient. Obviously, lim . . . .  x~ . . .  x , 0 E  A, the limit set of F. To compute the 

Martin boundary, the main problem is to obtain a tractable expression for the 

probability u (x, y) that a random path starting at x 0 ever reaches y 0. To this end 

we use the description of A outlined in section 2. 

We begin by assuming tha t /z (g)  > 0 if and only if g U Fo and indicate briefly at 

the end how to modify the construction in the general case. 

Let D* = D - U { P  : P is an open region enclosed by an infinite sided polygon 

in G(F)} and let S* = S'  fq D*.  We shall find m E N, and for p => 1 define regions 

R ( e j . . . e p ) C / 5 ,  e , . . . e p  ~Er: ,  such that 

(i) I ( e , . . . e , ) c s ' n R ( e , . . . e , ) ,  

(ii) I n t ( R ( e i . . . e p ) A D * ) 3  R ( e ~ . . . e , . , , ) f q D *  whenever e ~ - . . e p , , . E E ~ ,  

and 

(iii) I n t (R(e~ . . .  ep )n  S*) ~ R ( e , . . .  ep,~)f3 S*. 

Case I. I ( e l . . ' e p ) C I n t I ( e ~ . " e ,  ~). Let R ( e ~ . . . e p )  be the closed region 

bounded by the right and left extreme paths from ej �9 �9 �9 e,__~0 and I(el  �9 �9 �9 ep i). 

Case 2. I ( e i . . . e p ) A d I ( e ~ . . . e p  ~)~f~.  Suppose to fix notation that 

A ( e , . . . e p ) E I ( e i . . . e v _ ~  ). Let I ( f ~ . . . f p )  be the interval of rank p next to 

I ( e ~ . . .  ep) in  anti-clockwise order round S I. 

Case 2a. I ( e , . . . e p ) A I ( f ~ . . . f , ) = f ~ .  Let R ( e i . . . e , )  be the closed region 

bounded by the right and left extreme paths from e, �9 �9 �9 ep t0 and I(el �9 �9 �9 ep~l). 

Case 2b. I(e~. �9 �9 e,) f3 I ( f l"  " f , )  ~ f~. Let ~r, ~- denote the extreme left and 

right paths from e~ �9 �9 �9 ep_lO and f~ �9 �9 �9 fp ~0 respectively. Then there are vertices 

v E ~r, w E r which are joined by a single edge of G(F).  We prove this as 

follows: let S be the region bounded by the path 0, el0,.  �9 el �9 �9 �9 e,-i0, o-, and the 

path 0,f~0, . .  " , f l ' " f ,  ~0,~-. There can be no vertices in IntS.  For let s c be the 

endpoint of one of the extreme paths from such a vertex. Since admissible paths 

cannot meet  in D, ~c E S. Suppose gig2". �9 E ~r-~(~). Then I(g~ ..  �9 gp) would be 

an interval of rank p lying between I ( e l . . . e , )  and I ( f o . . . f p ) ,  which is 

impossible. Now some pair v E ~r, w C r must be joined by a path in S because 

otherwise there would be an infinite sided polygon in G(F),  with edges meeting 

on S ~, contradicting the assumption that F has no cusps. By the above remarks,  

this path must consist of a single edge E. 
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Choose v @o- and w G z to be as close as possible to e , . . . e e _ , 0  and 

f~ �9 "fp_~O. Let R(e, .  �9 �9 ep) be the region bounded by the left extreme path from 

f , " ' / p  10, the right extreme path from e , . - . e p  ~0; the paths in t~, r joining 

e, . . . e p  10 to v and f, . . . fp_ ,0  to w; E and I(e~.. .ep_,)UI(f,  ...[p O. 
Notice that d(v,e~.. ,  ep-O, d(w,e,...ep_O<-<_mo - 1, where mo is the max- 

imum number  of sides of a finite sided polygon in G(I ' ) .  

PROPOSITION 3.1. There exists rn E N so that 
S*AR(e , . . . ep~ , , )C ln t (S*AR(e , . "ep ) )  wheneverp>-l, e~...e,+,,~Y,.. 

PROOF. Suppose first I(e~. . .ep)ClntI(e, . . .ep_,) .  Then for m-->_2, 

S ~ t-) R (e, �9 �9 �9 ep§ is an interval containing one or two adjacent intervals of rank 

p + m -  1, at least one of which is contained in I(e, . . .ep).  On each side of 

l (e , . . . ep)  is at least one interval I(e~...ep ~a)C 1(e~...ep ~), a EFo. Each 

I ( e , . . . ep  ~a) contains at least two intervals of rank p + m - 1 .  Thus S~O 

R(e~. . .  ep+,,) is bounded away from the ends of I (e , . . .  e~_~). 
Suppose on the other hand that I(e~.. .ep)NOI(e~.. .ep ,)~f~, say 

A ( e ~ . . . e p ) E O I ( e , . " e p - ~ ) .  Again S 'AR(e , . . . ep , , , ) ,  m - > 2 ,  is an interval 

containing one or two adjacent intervals of r a n k p  + m - 1, at least one lying in 

I(e~... ep). 
Suppose we are in case 2b so that R(e , . . .  ep) N S' = 

l(e, . . .ep_,)U I(f,. . .fp_,), where I(e~...e~ , )AI( f~ . . . fp  0 = { A ( e , . . . e ~  i)}. 

Then I (e , . . .  ep)C I(e , . . .ep ,) and l (e , . . ,  ep)C I n t ( R ( e , . . .  ep)A S'). On each 

side of I ( e , . " ep )  there is at least one interval of rank p contained in 

R(e , . . .  ep)fq S', which gives the result. 

In case 2a we have R(e , . . .  ep) A S' = I (e , . . .  ep_,), and 

l ( e , . . ,  ep_,)N l ( f , . . . fp  , )=  ~3. Let or, ~" be the left and right extreme paths 

from e , . . .  e e ,0, [ , . . .  f~_,0 respectively. Only a finite number  of vertices v E o-, 

w E ~" can be joined by a path in G(F),  for arguing as before such a path can 

have only one edge and so an infinite number  of joining edges would imply that 

o', r have the same end points. There  is a bound m, independent  of p on 

d(v ,e , . . ,  ep_,) and d(w,f~..  "fp 1) for such vertices v, w; for if any such v, w 

exist then d(ft"'fe-, ,e~'"ep-O<=rno and there are only a finite number  of 

possible arrangements  of the polygons in G(F).  Choosing m > m, the argument  

is completed by observing that as we are working in S* we now need only 

consider the right endpoint p(e, . . .ep ,) of I (e , . . .  ep_,), and this works as in 

case 2b above. 

COROLLARY 3.2. D * A R ( e ~ . . . e p + , , ) C l n t D * A R ( e ~ " ' e p )  for e, . . .e , . , .  
EZF.  
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PROOF. This  can only fail if some  ver tex v E R ( e , . . . e p + , , )  lies in 

O R ( e , . . .  ep). Since Iv I->-P + m - 1, v must  lie on one  of the ex t r eme  paths  in 

OR(e, �9 �9 �9 ep) which converges  to a point  in O(S' fq R(e~ �9 �9 �9 ep)). In cases 1 and 2b 

above  this is impossible  because  the par t  of this path  f rom v to S 1 lies in 

O R ( e , . . . e p ~ . , ) .  In case 2a the choice of m forces ei ther  v E D * ,  which is 

al lowed,  or  the a rgumen t  works  as in case 1. 

F rom now on, we fix m as above.  

For  e, �9 �9 �9 e,,k E 5;v, k => 1, define inductively:  

V ( e , . . . e , , ) = { v E O R ( e , . . ' e , . ) : v  can be reached  f rom 0 by a pa th  of 

posit ive probabi l i ty  which first cuts O R ( e , . . .  e,.) in v}; 

V(e,  . . . emk ) = {v E O R ( e , . . .  e.,k) : v can be reached  f rom V(e~ . . . e,,t~_,)) by 

a pa th  of posit ive probabi l i ty  which first cuts O R ( e , . . .  e,,k) in v}. 

PROPOSmON 3.3. Let  ~ E A and suppose e , e : .  �9 �9 E r ~(~). Let  X~Xz" �9 �9 be a 

random path starting at 0 converging to ~. Then there exist integers 0 < n~ < n2 

< . . .  such that 

x , . . . x . ~  E V ( e , . . .  e,.k) for k >-_ 1. 

PROOF. For  k =>1, x , . . . x .  E R ( e l ' .  "emk), for  large n. This is clear  if 

I ( e , ' " e , , k  ) C  In t (S '  fq R ( e , ' ' .  emk )). Otherwise  S* fq I ( e ~ " . e m k  )C  

In t (S* A R ( e , . . .  e,.~)). T h e n  there  is a ne ighbou rhood  of I ( e ~ . . .  e,,k) in /5 

which contains  no vert ices o the r  than those in R ( e , . . .  e,.k), which gives the 

result. 

Since 0 E  R ( e t . . .  e.,) it follows f rom Corol la ry  3.2 that  x ~ x 2 " "  must  cross 

successively O R ( e ~ . . .  e~), O R ( e ~ . . .  e 2 , . ) , " - .  M o r e o v e r  the sequence  of first 

crossings { x , - . . x , , }  satisfies x , . . . x , k  E V ( e , . . .  e,,k), and 0 <  n ~ < . . .  < nk < 

nk+~ < ' ' "  unless possibly if 

w = x ~ ' "  x ,~OE O R ( e , . . .  e,.k)f') O R ( e , . . .  e,,~k§ for  some  k, 

which can only happen  if w ~ OD*. 

Now V ( e ~ . . .  e , ,k )N OD* consists of at most  one  point  v which is at dis tance 

at most  m, f rom e , . .  �9 e,,k-,. Since w E O R ( e , . . .  e,,~k+,~) we have  I w I>-_ m ( k  + 1) 

so that  v = w is impossible .  

Suppose  now /~ is any measu re  of finite suppor t  on F, and let N = 

max{Ig l  : / x (g )  > 0}. We  shall show that  there  exists M > 1 so that  Proposi t ion  

3.3 holds with M replacing m. 

LEMMA 3.4. Let  tr, z be paths in G ( F )  with endpoints ~, ~1 satisfying 
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I ~ - 17 I >= c. Then there exist No E N and b, 8 > 0 depending only on F, Fo and c, 

such that if x 0 E or and y 0 E z then 

d(x, y) >-B max(Ixl,lyl)-b 

d(x,y)>-BIxllyl-b 

if max(Ix I,ly I)=> No, 

i[ min(Ixl,lyl)>=No. 

PROOF. Let y be the geodesic arc joining x and y. Using the estimates of 2.3, 

the Euclidean size of y is bounded below independently of or, 7; for either one of 

h(x) ,  h ( y )  is small, in which case 3' is large; or x lies close to ~: and y to 7/so that 

the endpoints of 3/ are also close to ~:, 77. Choose e > 0 so that the Euclidean 

e-ball centers s c, t/ are disjoint and choose R so that h ( y ) > R  implies 

y E B , ( r / ) .  Also choose R large enough that the circle C center 0 with 

hyperbolic radius R cuts all the above geodesics 3' independently of tr, ~'. 

If h ( y ) =  < R then y0 lies inside C and x0 outside. Since h (x ,y )  is measured 

along 3', h (x, y)  => h (x, C) _-> h (x) - R. 

If h ( y ) >  R then y E B, (7/). Choosing h (x) large enough ensures x E B, (r 

also. Then x0, y0 both lie outside C on opposte sides of the cuts with 3', so 

h(x, y)_-> h ( x ) +  h(y)  - 2R. 

The result follows from 2.3. 

LEramA 3.5. There exists q > 0 so that for p >= 1, if v E V ( e l . . .  ep) and 

w E V ( e l . . .  e~+q) then d(v,w)>= N. 

PROOF. First consider the case where dR ( e l " "  ep)n  D consists of the two 

extreme paths or1 and or2 from e l ' " e p - ,  (cases 1 and 2a). Then w E 

d R ( e l ' "  ep+q) lies on one of two or four possible extreme paths z~, . . . ,  ~-4 in 

G(F)  all of whose endpoints lie in s i n  R ( e ~ . . .  ep§ provided q _>-m. 

An endpoint of such a path 7, can only coincide with an endpoint of ori if we 

are in case 2a. Arguing as in the proof of Proposition 3.3, one sees that in this 

case v E V(el"  " ep) n orj and w ~ V(e~. . . ep.q) n r, implies d(v, w)  >= N, pro- 

vided we choose q > N + rn~. 

Hence we may assume that the endpoints of ~',, trj are distinct for each i , / .  

Apply g = (el" �9 �9 ep-~) -~ to the whole picture. By the finiteness property 2.2 there 

are only a finite number of possible endpoints ~, of gor~ and only a finite number 

of possibilities for g(O(S ~ n R ( e ~ . . .  ep+m))). Thus I~ - r/Jl --> c independent of 

q, p, i, j, where r/j, j = 1," �9 ", 4 is the endpoint of gzj. Since gv E gor, and gw E g~'j, 

by Lemma 3.4 

d (v, w)  = d (gv, gw) >= 8 max(I gv I, I g w I) - b whenever max(I gv [, [gw [) >_- No. 
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Since w ~ R ( e , . . . e p )  and I w l > = p + q - 1  we have I g w l > = q - 1 .  Therefore  

choosing q large enough gives the result. 

It remains to consider the case 2b where c~R (et �9 �9 �9 ep) 71 D consists of, say, the 

extreme right path r from et �9 �9 �9 ep-t and the extreme left path ~ from f~ �9 �9 �9 fp_~, 

and I ( e ~ . . . e p )  and I ( f t ' " f p )  are adjacent intervals of rank p. Notice that 

d ( e ~ . . . e p _ ~ , f ~ . . . f p - t ) < m o .  If v E O R ( e , . . . e p )  and v E t r U r  then 

d ( v , e ~ . . . e p _ ~ ) < m  also. Thus choosing q > m + N ,  we may assume that 

v EO.1 to o'2. 

Now as before, w E a R ( e t . . ,  ep§ lies on one of four possible extreme paths 

z , , . . . ,  z4 whose endpoints lie in S ~ (3 R ( e t .  �9 �9 ep,m) provided q _-__ m. Also in this 

case 

S t 71 R ( e ~ . . .  ep+,,) C Int(S t 71R(e~ . . .  ep)). 

Applying g = ( e t " "  ep-~) -~ to the picture, the finiteness property implies there 

are only a finite number  of possible endpoints for intervals g I ( [ , . . . f p + , , )  with 

d(e, g f ~ . . . f p _ O < m .  Likewise there are only a finite number  of endpoints of 

intervals gI(e~ �9 �9 �9 ep+m). The proof now works as before provided we note that if 

w E Z(f~ . . . f ,  1), 

Igw I = d ( g  -~, w)>=  d f f t  " " f~- , ,  w ) -  d ( g  ~,f, . . . fp ,) 

> = ] w l - p + l - m ,  

and that we always have w E Z ( e t  �9 �9 �9 ep_~) tO Z(f~ �9 �9 �9 fp ,). 

GENERALISED PROPOSITION 3.3. It is clear from the above that for general tz, 

Proposition 3.3 holds with m replaced by M. 

For general p. we may not have/z  (g) > 0 for all g E F0. However,  since supp/z 

generates F, for each g E Fo there exists k = k ( g ) =  min{k :/.t~k~(g)> 0} where 

/.t ~k~ is the k-fold convolution of ~ with itself. Let K = m a x { k ( g ) : g  E Fo}. We 

note for future reference that in the above proof we may as well choose M so 

that d ( x , y ) >  K whenever x E c~R(e~. . ,  ep) and y ~ O R ( e t ' ' ' e p . M ) .  

w The probabilities u (x, y)  

Suppose {y.}7=, C F and lim._= y.0 = ~ E A. We shall obtain a formula 

u(x ,  y,)  = ( v ( x ) ,  Tqwq) 
u(e, y~) ( v ( e ) , T q w ~ ) '  

where Tq = At," �9 �9 At, is a product  of a finite number  of certain possibly infinite 
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strictly positive matrices A l , "  " ,Ak; v(x),  v ( e )  and wq are strictly positive 

vectors, and q ~ ~ as n--o ~. 

Suppose el �9 �9 �9 e,.ljM E X,v, where s _--> 1 and M is as in Proposition 3.3. By the 

finiteness property 2.2, using the argument of Lemma 3.5, there are only a finite 

number of possible arrangements of pairs of sets 

( e l ' " e s ~  O - ' R ( e , ' " e ~ M ) , ( e l ' . . e ~ _ l )  ' R ( e l ' ' ' e , ~ . l ~ M ) .  

One matrix A = Ai is defined for each one of these possible pairs. The rows of A 

are indexed by Vt =(e l ' ' ' e sM_,) - tV(eL ' ' ' e ~ M )  and the columns by V2 = 

(e, . . . e,M-,) ~ V(e ,  . . . e,+oM). The (v, w) entry a(v ,  w ), v E V~, w E V2, is the 

probability that starting at v a random path first hits V2 in w. We denote this 

matrix A = A(e~. . -e ,+~M).  

LEMMA 4.1. With  the notat ion above,  a (v, w ) >  0 for  all A ,  v, w. 

PROOV. From the definition of V ( e ~ . . .  e,M) it is sufficient to prove that if 

v , v ' E  O R ( e ~ . . . e , ~ )  then there is a path of positive probability from v to v' 

which does not meet R ( e ~ " ' e , + , M ) .  

If / ~ ( g ) > 0  for each g EFo we can clearly take the path joining v to v '  in 

O R ( e l . . .  e~M). 

More generally, one can join v to v' by a path of positive probability in which 

each vertex v" is joined to a vertex in O R ( e l . . .  e,M) by a path of length at most 

K. By the remarks at the end of the previous section, such a path cannot meet 

OR(et  . . . e~§ 

Suppose A = A ( e j ' ' ' e , §  Associated to A is a Hilbert space H =  

H ( e , ' " e , + o M )  with a complete orthonormal basis indexed by 

( e , . . .  e,M-~)-' V ( e ~ . . .  e ~ §  H may be finite or infinite dimensional. Suppose 

e , e 2 " - ' E E .  We may associate to e ,e~-- ,  the sequence of Hilbert  spaces 

I-t,. = H ( e ~ . . .  e,M), r = 1 ,2 , - - -  and the sequence of maps A~. :/4,. ~ H~._~, r => 2. 

(We shall show later that A,, is a bounded operator  on ~ , . )  

Keeping the same fixed sequence e~e2" �9 ", suppose x, y E F. Let V , ( x )  be  the 

row vector indexed by V(e~ �9 �9 �9 e,M) whose vth entry is the probability that a path 

starting from x first hits V ( e , . . .  e,M) (if at all) in V. Let w~(y) be the column 

vector indexed by V ( e ~ . . .  e,M) whose wth entry is the probability that a path 

starting at w E V ( e l . . .  e,M) ever reaches y. 

Now suppose that r > t > 0  are such that x ~ : R ( e ~ . . . e , , , , )  and y E  

R(e~ �9 �9 �9 e~M). Then any path from x to y must first hit V ( e t  �9 �9 �9 e,~) and then pass 

successively through V ( e ~ . . .  et,+~)M),." ", V ( e ~ . . .  e,M) and finally jump to y. 

By stationarity of the random walk, for any g E F the probability that a path 
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starting at v E V(e~ �9 �9 �9 e,M) first reaches V(e ,  �9 �9 �9 e ,  ~,)M) in w is the same as the 

probability that a path starting at gv first hits g V ( e ~ . . ,  e , , ,M)  in gw. Taking 

g = ( e l " "  e,M-,) -t, we get that this probability is exactly the (v, w) entry in 

A ( e t . "  e,+t)M). Thus one obtains the formula 

Hence we have 

PROPOSITION 4.2. 

u(x,  y ) =  ( v , ( x ) ,A , ,+ ,A , , . , . . .  A,,w, (y)). 

Suppose {y.}7-, C F and l i m . ~  y. = ~ E A. Suppose also 

that e ~e 2 " " E 1r-'( ~ ) and  x E F. Choose t > 0  such that x ff_ R ( e , . " " e,M ). Then 

with the notation above, ]:or any r > t, 

u(x ,  y.)  = (v , (x ) ,  A, , . , .  . . A , .w , (y . ) )  

[or all sufficiently large n. (Here v,, A, ,  w, all depend on the sequence e,e~ . �9 �9 .) 

PROOF. We only need note that since y. ~ {~ = 7r(e~e.. �9 �9 ), for any r > 0 we 

have y, E R ( e , . . .  e,M) for all sufficiently large n. 

COROLLARY 4.3. In the situation of  the Proposition, there exists a probability 

vector v (e  ) so that 

u ( x , y . ) = ( v ( x ) , A ,  . . . A , w , ( y . ) )  for large n. 
u(e, y.)  ( v ( e ) , A , . . . A , w , ( y . ) )  

The proof is clear. 

REMARK 4.4. By replacing v ( x )  by v (x )A , ,  and Wr by A , w ,  if necessary we 

may assume that all the coefficients of v (x), v (e) and w, (y,)  are strictly positive. 

w Convergence of the Martin kernels 

Our object in this section is to prove Theorems 1.1 and 1.2. The main idea is a 

version of the Perron-Frobenius  theorem for the matrix products A ~ , A , . . .  of 

the last section. The proof of this theorem is inspired by [1]. We begin by 

showing that all of the matrices A~ are compact operators. 

LEMMA 5.1. Let x E F. There are constants c > 0 and A < 1 so that 

u(e,x)<= cA I'j. 

PROOF. Let P be the convolution operator  

P l ( x )  = ~,  p , ( g ) f ( x g ) ,  x E F, f E L2(F). 
gEF 
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By [4], P has spectral radius A < 1; in other words lim,~= 11 P" 11~'" = A < 1. Thus 

II P "  I1~ < ~~ for  ,, _-> ,,o, say. 

Let ~5 be the delta function at e E F : ~ 5 ( y ) = 0  if y #  e and ~5(e)= 1. Then 

P"~(Y)= E ]L(")(Y-Iz)~(z) =/s 1), 
zEI" 

II p~8 III = ~ (~'~'(y _1))2< II pn 112211 8 1122 < A -'~ 
yEF 

for n>no.= 

Hence/a.~"~(y-~)<A" for n => no. 

Now #") (y )  = 0 whenever r < ]y ]/N (recall N = max{I g 1: t~ (g) > 0}) and so 

u(e ,y )  ~ < '"~ 'J = /z"~(y) cA it~ 
Nr~lyl 

Adjusting the constants gives the result. 

LEMMA 5.2. A, is a compact operator for each i. 

PROOf. Obviously we need only consider those A : H ~ H '  for which H '  is 

infinite dimensional. It is enough to see that the image of the unit ball in H is 

contained in a Hilbert cube of the form 

h =  

where {hi, : i  EN ,  1--< t =<q} 

In the case/~(g) > 0 if and 

at most four vertices v in the index set of the rows of A with 

rows may be indexed by N • {1 , . . . ,  4} in such a way that the 

corresponds to a vertex v with Iv [ -> n ; and similarly we can 

columns so that the (n,j)-column corresponds to w with I w 

~ A,h,, "lA,,l<=i -'} i n H ' ,  
i , t  

is an orthonormal basis of H'. 
only if g ~ Fo, it is clear that for each r _--- 1 there are 

Iv I =  r. Thus the 

(n, /)-component 

arrange to index 

]_->n. 
More generally there is an upper bound q, independent of r, to the number of 

vertices I r I in the index sets of rows and columns with ] v I = r. So indexing by 

N • {1 , . . . ,  q} we may arrange that the (n,j)-vertex v always satisfies Iv I_---n. 

Suppose A = A ( e l ' "  e(,.l)U). Write 

R = ( e l ' " e , M  i ) I R ( e l " " e , M ) ,  R'=(el '"e ,M-~)- 'R(e~ '"e , . l )M).  

We have R '  N S* C Int(R A S*). The vertices of the index set of the rows of A 

lie within a distance N of OR; likewise the vertices indexing the columns are 

within distance N of OR'. Therefore  by Lemma 3.4 and the proof of 3.5, there 

are constants & b, No so that a pair (v, w) indexing a coefficient of A satisfies 



Vol. 44, 1983 R A N D O M  W AL KS  ON F U C H S I A N  G R O U P S  237 

d(v,w)>-_6 max( Iv l , lw  I ) - b  

d ( v , w ) > - 6 [ v l l w l - b  

if m a x ( I v l , l w l ) > = N o ,  

if min(Iv I,Iwl) -> No. 

Taking into account the method of indexing, this gives 

a~,.o~,,.j~ < oc for each (n, i ) E  N x {1 , . . . , q}  
m.j 

and 

a~.o;(~.j)< c"e -~" if n -> No, 

for some constant c" independent of n. 

These two conditions give the result. 

We now copy the ideas found in [1]. 

Let H be one of the Hilbert spaces described above and let C be the positive 

cone {E;.,A,h,, E H : L, > 0 for all i, t}. We can define a metric 0 on the projective 

space P ( C )  of lines in C by 

O(f,g) = I log[ f ,g ,D ,D ' ] l ,  

where D, D '  are the lines in which the plane spanned by f, g cuts 3C and 

[ . . . . . . .  ] denotes cross-ratio (cf. the definition of hyperbolic distance in section 

2). Suppose A :H--~ H '  as above. Since all entries of A are strictly positive, 

A (C)C C' where C'  is the positive cone in H ' .  

Now 0 is obviously continuous with respect to the topology induced on P ( C )  

from H (to see this rotate axes so that f, g lie in the plane spanned by the first 

two basis vectors of H),  and similarly for 8'. Since by Lemma 5.2, A is a compact 

operator on H, A (P(C) )  is compact in C'  and so has finite 0'-diameter A say. By 

lemma 1 of [1], 

O'(Af, A g ) < = t a n h ( ~ ) O ( f , g )  f o r f ,  g ~ P ( C ) .  

LEMMA 5.3. Let A~,A,2. . �9 be the sequence of operators corresponding to some 

e,e2. �9 �9 E E, as explained in section 4. Let 7", = A~, �9 �9 �9 A~ . Then 

T . ( G . ) C  T . - , (G .  ,) for each n, 

and there exist c > O, fl < 1 .so that 

O,,(T.f, T,g)<= cfl" whenever f, g E P(G. ) .  
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PROOF. The first statement is immediate from the definitions and the second 

follows taking 

/3 = max{tanh ~A : A is the 0' diameter of A (C) for some A }. 

PROOF OF THEOREM 1.1. Using the notation and result of Corollary 4.3, we 

must show that 

lira (~ (x), A~, . .  �9 A , w ,  (y,)!  exists independently of y,. 
. -~  ( v (e ) ,A , ,  .A ,w, (y , ) )  

Since A~w, ( y , ) E  C~. , the result follows from Lemma 5.3. 

PROO~ Or THEOREM 1.2. (i) Choose a neighbourhood U of 77 with ~:~ U. 

Suppose e je2- ' .  E 7r-z(~:), and suppose z, E F ,  n = 1 , 2 , . . . ,  and lim,~= z. = 

r / ' E  U. In the proof of Proposition 4.2 we can arrange that z . ~  R ( e l ' "  e,,a) 

whenever z, ~ U. By the Corollary to that Proposition and Theorem 1.1, 

( v ( z , ) , A ,  . . .  A,,w,) 
K ( z , ,  ~) = !im (v(e) ,  A,, . . .  A,.w,) for any sequence wr E C~,. 

The components of v (z . )  are probabilities that a path starting at z, first enters 

R ( e l .  �9 �9 e,M) at some vertex w. By Lemma 3.4 it is clear that the length of any 

path from z, to w is at least/3 1 z, I - d for large n. By Lemma 5.1 therefore each 

component  of v(z ,  ) is less than or equal to ce -,.i,.t for some constant c and ct > 0. 

Using Lemma 5.3 gives the result. 

(ii) Consider g, = e , . . . e , M  ~ for t ~ 1. Then g, lies outside R ( e ~ . . .  e,M). Any 

random path from g, to a point in R ( e ~ . . .  e,M) must hit a vertex in V ( e t . . .  e,M). 

Let v(g,)  be the row vector indexed by V(e~ . . . e ,M)  whose vth entry is the 

probability that a path starting at g, first hits V(e, �9 �9 �9 e,M) in v. Arguing as in 

Proposition 4.2, 

K(g,,  ~:) = lim (v(g,), A,, -. �9 A~w,) for some sequence w, ~ C~. 
,~= (v (e ) ,A , ,  . A , w , )  

By the finiteness property 2.2 there are only a finite number of distinct vectors 

v(g,) for t = 1 , 2 , . . . .  Let 

Ai, �9 " A i w ,  
!im II A,, a, ,w, II = Wo. 

wo is independent of {w,}7=,. Therefore  Inf,(o(g,),  Wo)> 0. 

On the other hand, the distance from 0 to V ( e ~ . . .  e,M) increases as t---, oo and 

so by Lemma 5.1 the components of v (e )  become exponentially small. Thus 
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K(g , ,  = (v (g,) ,  w0) --, + oo. 
(v(e), w& 

Suppose now n is such that tM < n < (t + 1)M. Then for z E F 

u ( e , . . ,  e,, z)  >= u (e , . .  . e., g,)u(g,, z)  

>=cu(g,,z) for some c > 0 ,  independent of n. 

Hence K ( e , . . .  e,, z )  >= cK(g,, z )  and so l i m , ~  K(e~ . . .  e~, s ~) = + oo also. 

w The harmonic  measure v 

As described in the Introduction, the harmonic measure v on A is defined by 

v ( E ) = P r f ! i m x , . . . x , O ~ E ] ,  E C A .  

THEOREM 6.1. u is a Gibbs measure on ~Z with respect to the function 

~b(e , e2 . . . )=  - l o g K ( e , , e , e 2 . - . ) .  

PROOF. Let us first remark that ~ is not itself a subshift of finite type. 

However the finiteness property 2.2 allows one to code E almost bijectively to 

space E' which is of finite type. The details are carried out in [15]. Using the 

results of [15] w it is clear that it is enough to show that 

(i) there are constants c > 0 ,  r / <  1 so that 14,(w)-th(w')[--<c~7 ~ whenever 

w , w ' E ~  and w~ =w~ for i<=n; 
(ii) there are constants T > 0, P so that 

T - ' e x p ( S o c b ( w ) - P n ) <  v ( Z ( w l . . ,  wn))< T e x p ( S ~ b ( w ) - P n ) ,  n = 1 , 2 , . . . ,  

whenever w E Z ( w , . . .  w.), where Snob(w) = E,%-o ~ ~b(cr'w) and or is the left shift 

on ~. 

Suppose w, w' ~ 5~ and w, = w'i for i _--- n. Then 

K(w,,w),,[ 
I ~ ( w ) -  4'(w')I = I l~ K(w, ,  w )[  " 

Suppose rM <-_ n < (r + 1)M. By Corollary 4.3, there exists t independent of n 

so that 

(v(w,), A,, " . A~A,,.,. . . A, w,,,} 
K(w, ,  ~r(w)) = lim_m (v(e),  A~ . . .  Ai .A, , . , . . .  A, w,,) 
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and 
A t t I 

K ( w , , z t ( w ' ) ) =  l;m (v(wO, A,, " "  A,, ,,.,A,~wm) 
,;,'~"~ (v (e), A~, . . .  A~A ; , . , . . .  A 'j. w ") 

where w,,, w"  E C. .  
Let u = A~,, . . . A~ w,,,, u' = A ~,, . . . A '~ w ',,,, and T = A~, .--  A, .  By Lemma 

5.3, O,, (Tu, Tu') <= c/3' '. 
We wish to estimate the expression 

[(v(w,) ,  Tu) (v(e) ,  Tu') 
log \ - (v(e) ,  Tu)" (v(w,) ,  Tu')]  " 

By Remark 4.4, we may assume v(wt),  v (e )  and u, u' are strictly positive. 

Rotate axes so that the first two basis vectors lie in the plane spanned by Tu, 

Tu'  and let Tu = ( f , , f 2 , 0 , ' " ) ,  T u ' = ( g , , g 2 , 0 , . .  . ), v ( w , ) = ( a , b , . .  . ), v ( e ) =  
(c, d , . . .  ) in these co-ordinates. Let /3 = (~ ~). We have to evaluate 

af, + bf2 . cg, + dg2 
cfl + df2 ag~ + bg2 " 

According to [1], 

O(Tu, Tu ' )=  l log~g2  I 

and 

O ( B T u ' B T u ' ) = l l ~  + df2 ag, + bg2 

=< tanh (4t)t)O(Tu, Tu') 
where h. = l log(ad/bc)l .  

Since B is independent of m and r we obtain 

for some c ' >  0, r / < l .  

(ii) Observe that K(x,  w ) : F x  A--~R satisfies the cocycle identity 

K(x ,  ~)K(y, x - ~ )  = K(xy ,  ~), x, y ~ F, ~ ~ ~. 

(Actually o-(x, w ) =  K ( x  -~, ~) is a cocycle in the usual sense.) 

This follows by taking limits in the relation 

u(x,z) u(y,x-'z)_ u(xy, z) 
u ( e , z ) "  u ( e , x - ' z ) -  u ( e , z )  ' x , y , z  ~ r .  

It follows that S~b(~)= - l o g  K(e, . . . e , ,_~,  cr n -'~), and 

exp (S~b (~)) = !im (v~ (e), A , , . . .  A,  wr) 
4| (v(el  " " e,-O,A,,  " " A,,w,i 
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where t is chosen so that M ( t  - 1)~  n < Mt,  e , e 2 . . .  E zr-'(sc), and w, E C,. 

On the other hand, v ( Z ( e , . . ,  e,)) is the probability that a path starting at 0 

converges to a point ~: • Z ( e ,  �9 �9 �9 e.). By reasoning as in Proposition 3.3 one sees 

that any such path eventually hits V ( e , . . . e M ,  ,~). 

L e t  u, be the column vector with entries indexed by V ( e , . . .  e ~ , _ . ) ,  whose 

v th entry is the probability that starting at v a path converges to r / E  

Z ( e , . . .  e.). Then 

v ( Z ( e ,  . . . e, )) = ( w.  (e ), A,, ,u,), 

where w. (e) is the row vector indexed by V ( e ,  �9 �9 �9 eM,_,~) whose wth entry is the 

probability that, starting at e, a path first hits V ( e , . . . e , _ , ~ )  in w. 

Notice that v. (e) = w. (e)A~, ,. 

Writing q, = A~,A~,. , . .  �9 A~w,  we obtain 

exp S, tk(~:) = !im (w, (e), a,, ,q,) 
u ( Z ( e , . . . e . ) )  - ~ ( w , ( e ) , A , , _ , u , ) ( v ( ( e , . . . e ,  ~)-~), q,) " 

The vectors p, = q,/[lq, [1 lie in a compact set in the unit ball of Hi,_, since they 

are in the image of A~,. Since e, �9 �9 �9 e. is at a bounded distance from R ( e ,  �9 �9 �9 e~,),  

by the finiteness property there are only a finite number of different vectors 

v ( e , . . ,  e._~), independent of n. Therefore 

O < i n f  ( v ( e , . . . e .  , ) p , ) < s u p ( v ( e , . . . e .  ,) ,p,)<~c. 
r . n  r .n  

Again by the finiteness property, there are only a finite number of possible 

vectors u,. The vectors A~,_,p, and A,, 2u, therefore satisfy 

0 <  M2__<IIA,, ,p, ll,llA~,_,u, J l ~ M ,  <oo 

for constants M,, M2 independent of t and r. 

Take an orthonormal basis in the plane spanned by A~, ,p,, A i ,  ,u,, so that with 

respect to the co-ordinates in this plane, A,,_,p, = (a, b )  and A~,_,u, = (c, d )  are 

strictly positive. 

Let 

a V a l : l X  u _ _ l , l , j  , 

Then K is compact and (ca 3) E K. Moreover  the image under K of any interval 

[T,, T2], T~, / '2>0,  is again an interval bounded away from zero and infinity. 

Let the components of w. (e) with respect to the two basis vectors above be 

(hi, h2). We may arrange that hi, A2 > 0. Then 
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(w, (e), A,,_,p,) _ aA, + bX2 
(w.(e).A,, ,u,) cA1+ dA2 " 

Now w . ( e ) =  z,(e)A,,  2, where z , ( e )  is the row vector indexed by 

V ( e , . . .  eM,-21) whose wth entry is the probability that starting at e, a random 
path first hits V ( e , . . .  eMo-2~) in w. The proof of Lemma 5.2 shows equally that 
AT is a compact operator for each i, hence the image of z,(e)A,,  . lies in a 
compact set in the interior of the positive cone of the corresponding projective 

space independently of n and e~e2"- .  
Therefore A,/A2 is bounded uniformly away from zero and infinity. Combining 

this with the remarks about K above, one has that (aA, + bA2)/(cA, + dA.) is 
uniformly bounded away from zero and infinity, which is the result we require. 
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